PELURUHAN RADIOAKTIF—RADIOAKTIF

Peluruhan adalah perubahan spontan dari satu nuklida induk menjadi satu nuklida anak yang bersifat radioaktif maupun yang tidak, dengan memancarkan sinar-sinar atau partikel-partikel radioaktif. Nah, dalam peluruhan terdapat perhitungan radioaktif.

Tahu kota Chernobyl? Ya, di kota tersebut terjadi ledakan nuklir yang besar sehingga berdampak pada aktivitas radioaktif yang dahsyat, jadi tidak ada yang berani menempati tempat tersebut. So, karena adanya pancaran radioaktif, massa unsur-unsur radioaktif tersebut juga meluruh sampai 0 gram, tapi untuk meluruh butuh waktu yang sangat-sangat lama! Lho kok bercerita ya -_-

A. Laju peluruhan

Laju peluruhan adalah seberapa cepat suatu zat radoiaktif meluruh. Laju peluruhan menandakan keaktifan zat radioaktif, dengan berbanding lurus terhadap konstanta dan jumlah nuklida radioaktif. Rumusnya:

LAJU PELURUHAN
LAJU PELURUHAN

B. Waktu paruh

Waktu paro atau paruh adalah waktu yang diperlukan unsur radioaktif sehingga separo zat radoiaktif tersebut meluruh dari massa awalnya. Waktu paruh dilambang dengan t1/2. Rumusnya yaitu:

WAKTU PARUH
WAKTU PARUH

C. Umur rata-rata

Umur rata-rata adalah kebalikan dari peluang (hipotesis) untuk meluruh persatuan waktu. Dengan rumus:

UMUR RATA-RATA
UMUR RATA-RATA

D. Peluruhan inti

Dalam peluruhan inti inilah perhitungan radioaktif yang paling penting karena menyebabkan perbedaan jumlah partikel sebelum dan sesudah reaksi peluruhan. Berikut rumus peluruhan inti:

PELURUHAN INTI
PELURUHAN INTI

CONTOH SOAL:

  1. Sejumlah 25 gram zat radioaktif disimpan selama 60 tahun. Jika waktu paruh zat tersebut adalah 20 tahun, massa zat radioaktif yang tersisa adalah … gram
    A. 3,125                                      D. 4,15
    B. 3,25                                        E. 6,25
    C. 3,75
    –> Penyelesaian:
    Nt = No (1/2)^t/t1/2
    Nt = 25 (1/2)^60/20
    Nt = 25 (1/2)^3
    = 3,125 gram
  2. Setelah 10 tahun keaktifan unsur Telurium meluruh menjadi 300 dps, dengan keaktifan awal 2400 dps. Waktu paro zat radioaktif tersebut adalah …
    A. 3 tahun                                      D. 1 tahun
    B. 6,5 tahun                                   E. 3,125 bulan
    C. 3,3 tahun
    –> Penyelesaian:
    Dalam soal diket waktu awal (t) 10 tahun dan keaktifan akhir (At) 300 dps, serta keaktifan awal (Ao) 2400 dps. Waktu paro (t/12) berapa ya?
    ^^^At = Ao (1/2)^n
    300 = 2400 (1/2)^n
    n = 3
    ^^^n = t/t/12
    3 = 10/t1/2
    t = 3,3 tahun
  3. Sebuah benda purbakala yang baru ditemukan memiliki massa 8 gram. Jika umur benda tersebut diperkirakan 2,610 tahun dengan waktu paruh 870 tahun, massa awal benda adalah … gram
    A. 40                            D. 64
    B. 48                            E. 66
    C. 56
    —> Penyelesaian:
    Nt = No (1/2)^t/t/12
    8 = No (1/2)^2.610/870
    No = 64 gram
  4. Suatu radioaktif mempunyai waktu paruh 18 hari. Jika unsur radioaktif tersebut disimpan selama 72 hari, sisa unsur radioaktif tersebut adalah … %
    A. 3,12                                        D. 25
    B. 6,25                                        E. 50
    C. 12,5
    –> Penyelesaian:
    Nt = No (1/2)^t/t/12
    Nt/No = (1/2)^72/18
    Nt/No = (1/2)^4
    Nt/No = 0,0625 x 100 %
    = 6,25 %
  5. Waktu paruh Bi-210 adalah 5 hari. Awalnya disimpan sebanyak 16 gram dan kemudian sisanya tinggal 1 gram, unsur tersebut telah disimpan selama … hari
    A. 10                                     D. 25
    B. 15                                     E. 30
    C. 20
    –> Penyelesaian:
    Nt = No (1/2)^t/t1/2
    16 = 1 (1/2)^t/5
    16 = (0,5)^t/5
    t = 20 hari
  6. Untuk jumlah mol yang sama, maka zat radioaktif yang paling aktif ialah yang mempunyai waktu paro …
    A. 4,5 milyar tahun
    B. 65 tahun
    C. 12 hari
    D. 1 menit
    E. 1 detik
    –> Penyelesaian:
    Semakin cepat waktu, semakin cepat zat radioaktif meluruh dan paling aktif
  7. Sebuah fosil berupa tulang binatang ditemukan dalam tanah. Setelah diteliti dalam laboraturium teryata tulang tersebut mengandung sisa 25% C-14. Jika waktu parut dari C-14 adalah 5.730 tahun, maka umur fosil itu adalah …
    A. 2865 tahun
    B. 4297,5 tahun
    C. 5730 tahun
    D. 8595 tahun
    E. 11460 tahun
    –> Penyelesaian:
    Sisa 25% C-14 (isotop C-14) adalah perbandingan atau hasil bagi antara Nt dan No. Jadi:
    Nt = No (1/2)^t/t1/2
    Nt/No = (1/2)^t/t1/2
    25% = (1/2)^t/5730
    25/100 = (1/2)^t/5730
    t = 2 x 5730
    = 11460 tahun
  8. Suatu sampel isotop radioaktif (T1/2 = 6 hari) dibuat dan mulai disimpan pada tanggal 1 Juni 2005 dengan aktivitas spesifik 9600 cpm. Pada tanggal berapa aktivitasnya tinggal 300 cpm?
    A. 7 Juni
    B. 13 Juni
    C. 19 Juni
    D. 25 Juni
    E. 1 Juli
    –> Penyelesaian:
    Karena soal ini melibatkan aktivitas (keaktifas) maka digunakan rumus: At = Ao . e^-λt ; dengan mencari λ terlebih dahulu dari rumus waktu paro:
    λ = 0,693/T1/2 = 0,693/6 = 0,1155
    At = Ao . e^-λt
    300 cpm = 9600 cpm . 2,71828^-0,1155t
    t = 30 hari (1 Juli)

LANJUT: REAKSI INTI DAN RADIOISOTOP—RADIOAKTIF

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s